Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Fourth Semester B.E. Degree Examination, Dec.2016/Jan.2017 Advanced Mathematics – II

Time: 3 hrs. Max. Marks:100

Note: Answer any FIVE full questions.

- 1 a. Find the angle between any two diagonals of a cube. (06 Marks)
 - b. The direction cosines of three mutually perpendicular lines are l_1 , m_1 , n_1 , l_2 , m_2 , n_2 and l_3 , m_3 , n_3 . Show that the line with direction cosines $l_1 + l_2 + l_3$, $m_1 + m_2 + m_3$, $n_1 + n_2 + n_3$ is equally inclined to the above lines. (07 Marks)
 - c. Find the equations of the plane passing through the points (1, 2, 3) (0, 1, 4) and (0, 0, 1).

 (07 Marks)
- 2 a. Derive the equation to the plane in the intercept form $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$. (06 Marks)
 - b. Find the angle between the lines $\frac{x-1}{1} = \frac{y-5}{0} = \frac{z+1}{2}$ and $\frac{x+3}{3} = \frac{y}{5} = \frac{z-5}{2}$. (07 Marks)
 - c. Find the image of the point (1, 2, 3) in the line $\frac{x+1}{2} = \frac{y-3}{3} = -z$. (07 Marks)
- 3 a. Show that the position vectors of the vertices of a triangle 2i j + k, i 3j 5k, 3i 4j 4k form a right angled triangle. (06 Marks)
 - b. Find a vector of magnitude 12 units which is perpendicular to the vectors $\overrightarrow{a} = 4i j + 3k$ and $\overrightarrow{b} = -2i + j 2k$. (07 Marks)
 - c. Find λ so that the points A(-1, 4, -3), B(3, 2, -5), C(-3, 8, -5) and D(-3, λ , 1) are coplanar. (07 Marks)
- 4 a. Find the unit tangent vector of the space curve $x = 1 + t^3$, $y = 2t^3$, $z = 2 t^3$ at t = 1. (06 Marks)
 - b. Find the angle between the tangents to the curve $\vec{r} = \left(t \frac{t^2}{2}\right)i + t^2j + \left(t + \frac{t^2}{2}\right)k$ at $t = \pm 1$.
 - c. A particle moves along the curve whose parametric equations are $x = t \frac{t^3}{3}$, $y = t^2$ and $z = t + \frac{t^3}{3}$, where 't' is the time. Find the velocity and acceleration at any time 't'. Also find their magnitudes at t = 3.
- 5 a. Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $x = z^2 + y^2 3$ at (2,-1,2).
 - b. Find the constants a, b, c such that the vector,
 - $\overrightarrow{F} = (x + y + az)i + (bx + 2y z)j + (x + cy + 2z)k \text{ is irrotational.}$ (07 Marks)
 - c. If $\overrightarrow{A} = \operatorname{grad}(x^3 + y^3 + z^3 3xyz)$ then find div \overrightarrow{A} and curl \overrightarrow{A} . (07 Marks)

MATDIP401

(05 Marks

(05 Marks

c. Find
$$L\left[\frac{1-e^{at}}{t}\right]$$
.

(05 Marks

d. Find
$$L[e^t \cos^2 2t]$$
.

(05 Marks

7 a. Find
$$L^{-1}\left[\frac{s}{(s+2)(s^2+1)}\right]$$
.

(06 Marks)

b. Find
$$L^{-1} \left[\frac{s+2}{s^2 + 2s + 2} \right]$$
.

(07 Marks)

c. Find
$$L^{-1} \left[log \left[\frac{s^2 + 1}{s(s-1)} \right] \right]$$
.

(07 Marks

8 a. Using Laplace transform solve:

$$y'' - 2y' + y = e^{2t}$$
 with $y(0) = 0$ and $y'(0) = 1$.

(10 Marks)

b. Solve using Laplace transformation, method $y'' + 2y' - 3y = \sin t$, y(0) = y'(0) = 0.

(10 Marks)

* * * * *